ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

Using Interrupis

OBJECTIVES

= Implement an embedded project (PS + PL) where a hardware component inside the PL can generate an interrupt to the
processor (Vivado 2019.1).

= Learn to develop software routines to handle PL interrupts.

PL INTERRUPTS - DOCUMENTATION

= UGb85: Zyng-7000 AP SoC Technical Reference Manual — Chapter 7.
= XPLANATION: FPGA 101, “"How to Use Interrupts on the Zynq SoC”, Xcell Journal, Second Quarter 2014.

PL INTERRUPT TEST
= Test Project: AXI-4 Full Pixel Processor peripheral with interrupt signal. This peripheral (from Unit 7) was modified by
including an interrupt signal oint and by updating the FSM@ S_AXI_ACLK.
= A PL interrupt is forced by writing onto a specific register in the AXI4-Full Peripheral. This is not a software interrupt. The
process goes as follows:
v Write a specific word (0x99AA55EE) on address 1101 on the AXI4-Full 0x99AA55EE written a word is read
Pixel processor peripheral. This will assert the interrupt signal oint. on address 1101 from address 1101

v’ Let the software routine wait until the PS detects the interrupt signal. ! '
v When the interrupt signal is detected, the ISR de-asserts the interrupt oint /1, ;4
signal (and prints a message) by reading a word from address 1101. ' '

CusTtoM AXI4-FULL PERIPHERAL: PIXEL PROCESSOR WITH INTERRUPT QUTPUT

CONSIDERATIONS

= We will use the Pixel Processor with NC=4, NI=NO=8.

= AXI4-Full Peripheral: Custom FIFO-based interface that.includes a user-generated output signal oint. All writes/reads to any
of the 16-word memory positions are treated equally (writing/reading on the FIFO). The exception is the write/read at
register 13, which is used to assert/de-assert the interrupt signal.

= List of files to use:

mypixfullintr vl 0.vhd: AXI4-Full Peripheral (top file) with interrupt output.

mypixfullintr vl 0 S00 AXI.vhd: AXI4-Full Interface description.

myAXI IP.vhd, my AXI fifo.vhd, my gen pulse sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

pixfull rp.vhd: wrapper file for the Pixel Processor IP. Here, we can modify the parameter F (1..5).

pixfull fifointf.vhd: top file for the Pixel Processor IP.

LUT_group.vhd, LUT NItoNO.vhd, LUTNItol.vhd, pack_xtras.vhd.

LUT _values8to8.txt: LUT values.

= AXI4-Full Pixel Processor Peripheral (we make S AXI CLK=CLK_FX) with interrupt output oint: In Figure 1, see the circuit
that generates oint. To assert and de-assert this interrupt signal, we need to write and read to/from address 1101. Writing
on address 1101 still writes data on the iFIFO, and the reading retrieves resulting data from oFIFO.

ASENENENENENEN

IP GENERATION
= Create a new Vivado project: pixfull dr intr sys
¥' Make sure the default language is VHDL, so that the system wrapper and template files are created in VHDL.
v At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) board.
» From the menu bar, select Tools — Create and Package IP. A new Vivado project will open.
v Create a new AXI4 Peripheral. Name: nypixfullintr. Location: /ip repo.
Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings — IP — IP
repositories and point to the associated repository folder.
v Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes.
v’ Select Edit IP. A New project appears: look for <peripheral name>.vhd and <peripheral name> S00 AXI.vhd files (in
this case it will be mypixfullintr vl 0.vhd mypixfullintr vl 0 S00_AXI.vhd). Modify the project:
o Replace these two files with our edited files mypixfullintr vl 0 S00 AXI.vhd and mypixfullintr vl 0.vhd. This
is necessary as our peripheral includes an output oint.
= Add the extra files to the folder /hd1 in /ip repo/mypixfullintr 1.0 and add these source files (including the .txt
file) to the Vivado project. *Vivado 2019.1: by default, the files will also be added to the folder /src.
v" There is no need to add external ports as our peripheral does not include external I/Os.
v" Synthesize (just to double-check everything is ok): You should’ve simulated the code in a different project.

1 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

v Go to Package IP - mypixfullintr: Identify areas that need refresh:
= Important: When replacing the top file (mypixfullintr vl 0.vhd), we must make sure that Vivado detects the
inclusion of the interrupt output signal (it is not enough to just replace the file in the folder, so you can just add an
extra space in the file and save it). Then, you should see that in Package IP, you also need to click on Merge Changes
for Ports and Interfaces. This will enable Vivado to add the extra interrupt port.
= Click on Merge changes from File Group Wizard.
v Go to Review and Package — Re-Package IP.
Your custom IP with interrupt output is now ready to be used as an AXI4-Full Peripheral
You will return to the original Vivado Project.

axi_aw_addr (5..2)=1101 fD? oint
S_AXI_WDATA = 0x99AA55EE —|
axi_ar_addr (5..2)=1101 B
S_AXI_AWID R S_AXI_ARID
>|— < = = S_AXI_ARESETN=0 (C«-0)
S_AXI_AWADDR 6 6 S_AXI_ARADDR
S AXI AWLEN g —— S_AXI_WDATA '8 S_AXIARLEN
> l axi_aw_addr <€ —_—
S_AXI_AWSIZE 3 D 3 SAXI_ARSIZE
S_AXI_AWBURST 2 | —] &i_ar_addr ‘2 S_AXI_ARBURST fifo_fsm_rst <-1
> L _ €
S_AXI_ AWVALID . PP " S_AXI_ARVALID
S_AXI_AWREADY _ L LUT |y ~ S_AXI_ARREADY
< iFIFO 512x32 ! 8-t0-8 || OoFIFO 512x32 — >
<oint FWFT Lot i FWFT
S_AXI_WDATA 32] 8-t0-8 [S_AXI_RID
> > DI DO—>{| i [~>1DI DO| >
S_AXI_WSTRB 4 —>{wren rdenf<— |1 [ot |1 [>{wren rdenf< 32, S_AXI_RDATA
i [T 8-to-8 [T] ;-
S_AXI_WLAST s 2 < || . 2 S_AXI_RRESP;
S_AXI_WVALID - L 35 4 fwr || B35 4 S_AXI_RLAST
> - 8-to-8 >
_S_AXI_WREADY LT S_AXI_RVALID
g | S_AXI_RREADY
iempty <
_S_AXI_BID FSM
< ifull
_S_AXI_BRESP 2 ™ md T
- N\
_S_AXI_BVALID oempty orden
S_AXI_BREADY R g FSM
> |_) °
S_AXI_ACLK) —oD EI S
AXI_ARESETN Dc
S_AXT_ARESETN mem_rden axi Tan/ arr_fla .§| : _ t
i_arv_arr_flag x) .
mem_wren fifo_fsm_rst [>

CLKFX FSM at S_AXI_ACLK
Figure 1. AXI4-Full Pixel Processor Peripheral with interrupt output (oint)

CREATING A BLOCK DESIGN PROJECT IN VIVADO

Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIXFULLINTR peripheral.

Click on Run Block Automation and Run Connection Automation.

There is no need to add an . xdc file as our peripheral does not use external ports.

Connect to interrupt signal (oint) to the PS:

v Go to PS — Interrupts. Check Fabric interrupts. Expand PL-PS Interrupt Ports. Then, check 1ro F2p[15..0] (see Figure
2). This enables the 16 PL interrupts.

v Connect the oint signal (see Figure 3). By default, if it is only one bit, it will connect to 1ro F2p[0..0]. This is the
interrupt IRQ ID #61. This has to be properly set up in the software routine as ‘xps_FPGAO INT ID’.

v If we have more than one interrupt signal, we must use the concat IP.

Click on Validate Design to ensure the interrupt connection is correct.

Create the VHDL wrapper (Sources Window — right click on the top-level system design — Create HDL Wrapper)

Synthesize, implement, and generate the bitstream.

2 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

v An error will be reported at Synthesis. Vivado only copies VHDL files from the IP folder to the embedded project folder
(located inside the /<peripheral name>.srcs/../ipshared folder). As a result, the 1uT N1tono.vhd file cannot find
the LUT values8tos.txt. We need to place this text file in the same folder as the LuT nitono.vhd file.

v’ This folder location is available by opening the nuT NTtono.vhd file. You can find this file in the design structure or via
the Vivado error which will point to the Lut n1tono.vhd file. After copying the .txt file, you can Synthesize again.

v In general, this procedure is to be followed for any ancillary file (e.g. text file) used by the VHDL files.
= Export hardware (with bitstream) and launch SDK.

[Re-customize IP

ZYNQT Processing System (5.5) '
@ Documentation £} Presets IP Location 4F Import XPS Settings

Page Navigator Interrupts Summary Report

Zyng Block Design « QO T =

P3-PL Configuratiol Search: |-

Interrupt Port In] Description
Peripheral /0 Pins —
P ~ || Fabric Interrupts Enable PL Interrupts to PS and vice versa
MIO Configuration 1\ ~ PL-PS Interrupt F'orts\
|+ IRCQ_F2P[15:0] [91:84], [68:61] Enables 16-bit shared interrupt port from the PL. MSB is as:
Clock Configuration) Cored_nFIQ 28 Enables fast private interrupt signal for CPUO from the PL
[Cored_nIRQ Ky Enables private interrupt signal for CPUQ from the PL
DDR Configuration —) A)
|| Core1_nFIQ 28 Enables fast private interrupt signal for CPU1 from the PL
SMC Timing Calculi [core1_niRQ kY| Enables private interrupt signal for CPUA1 from the PL
> PS-PL Interrupt Pors
Interrupts
< >
0K | | Cancel
Figure 2. PS Customization. 16 PL Interrupt signals enabled
rst_ps7 0 _50M
slowest_sync_clk mb_reset
ext_reset_in bus_struct_reset[0:0]
0 aux_reset_in peripheral_reset[0:0]
= mb_debug_sys_rst interconnect_aresetn[0:0]
= dem_locked peripheral_aresetn[0:0]

Processor System Reset

processing_system7_0

DOR + ||} {— DDR
FIXED_IO + || [FIXED_IO
M_AXI_GPO_ACLK - usBIND_0 + ||| axi_smc
IRQ_F2P[0:0] ZYNO M_AXI GPO + — mypixfullintr_0

|

FCLK_CLKD - S00_AXI -Y-
FCLK_RESETO_N ack H—E MO0 AXI + i 4 s00_AxI
b—{ aresetn .ﬁ. s500_axi_aclk oint
ZYNQT Processing System \) 800 axi aresetn

AX| SmartConnect

yp\xf.ullintr_ﬂ .0 (Prc-Pronction)

Figure 3. Connecting the oint interrupt signal to the PS (signal IRQ_F2P[0..0] with IRQ ID #61)

3 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

TESTING WITH SDK

See Tutorial Unit 2 for details on how to create and test a software application on SDK.

Create a new SDK application: pixtest_intr. Then, copy the following file into the /src folder: pix plintr.c

The software routine will write and read 32-bits word to/from the AXI-4 Full peripheral (Pixel Processor with interrupt output)
and will verify the assertion, detection, and de-assertion of a PL interrupt.

Each PL interrupt has its associated Interrupt Service Routine (ISR). We specify this inside the following function:
SetupInterruptSystem (XScuGic *GicPtr)

v We connect the ISR to the Generic Interrupt Controller (via xscuGic Connect) by assigning the IRQ ID #61
(XPs_FPGAO INT 1ID).

v We specify a user-defined function to be executed inside the ISR. This is done by specifying the function
DeviceDriverHandler iN XScuGic_connect.

v" In the pevicebriverHandler function, we can specify the instructions we want to be executed once an interrupt hits.
In this example, this function reads a word from address 1101 and prints the retrieved data.

Once the program is compiled, connect the ZYBO (or ZYBO Z7-10) Board to the USB port of your computer.
Download the bitstream on the PL: Xilinx Tools — Program FPGA

Go to the SDK Terminal and connect to the proper COM port.

Select the project you created. Right-click and select Run As — Launch on Hardware (GDB).

Testing strategy:
v" The software routine writes the following 4 words and retrieve the following words from the peripheral (Pixel Processor
with parameter F=1):

Input | Output
OxDEADBEEF 0XxEED2DDF7
OxDEAFBEAD 0xEED4DDD2
OxFADEDEAD 0xFDEEEED2
0xFACEBOOC 0xFDE6D437

v" The software routine then writes the word 0x99AA55EE on address 1101. This will assert the interrupt. The routine
waits until the interrupt is asserted.

v" Then, the ISR is executed: a message is printed (PL Interrupt occurred’), and a word is read from address 1101.
The word read should be 0xCcé6D194F7 (Pixel Processor with F=1).

v" To double-check that the assertion and de-assertion of the interrupt does not affect the correct operation of our circuit,
we write again the words in the table above. We are supposed the retrieve the same output.

v At this moment, we have successfully tested the interrupt.

Note: Do not assert the interrupt and then de-assert it immediately. The PS needs to detect the interrupt first, otherwise the
ISR is never activated and the software routine will remain forever waiting for the PL interrupt.

NOTE

There is another file pix dma plintr.c that tests both the DMA (with interrupts) and the PL interrupts. It essentially merges
the application from Tutorial # 8 (DMA with interrupts) and the software application in this Tutorial # 9 (PL interrupts). Feel
free to test this code by creating a new SDK application.

4 Daniel Llamocca

